Survival of motor neuron protein over-expression prevents calpain-mediated cleavage and activation of procaspase-3 in differentiated human SH-SY5Y cells.

نویسندگان

  • R S Anderton
  • B P Meloni
  • F L Mastaglia
  • W K Greene
  • S Boulos
چکیده

Spinal muscular atrophy (SMA), a neurodegenerative disorder primarily affecting motor neurons, is the most common genetic cause of infant death. This incurable disease is caused by the absence of a functional SMN1 gene and a reduction in full length survival of motor neuron (SMN) protein. In this study, a neuroprotective function of SMN was investigated in differentiated human SH-SY5Y cells using an adenoviral vector to over-express SMN protein. The pro-survival capacity of SMN was assessed in an Akt/PI3-kinase inhibition (LY294002) model, as well as an oxidative stress (hydrogen peroxide) and excitotoxic (glutamate) model. SMN over-expression in SH-SY5Y cells protected against Akt/phosphatidylinositol 3-kinase (PI3-kinase) inhibition, but not oxidative stress, nor against excitotoxicity in rat cortical neurons. Western analysis of cell homogenates from SH-SY5Y cultures over-expressing SMN harvested pre- and post-Akt/PI3-kinase inhibition indicated that SMN protein inhibited caspase-3 activation via blockade of calpain-mediated procaspase-3 cleavage. This study has revealed a novel anti-apoptotic function for the SMN protein in differentiated SH-SY5Y cells. Finally, the cell death model described herein will allow the assessment of future therapeutic agents or strategies aimed at increasing SMN protein levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining the anti-apoptotic function of the survival of motor neuron (SMN) protein and assessment of a novel therapy for the treatment of spinal muscular atrophy (SMA)

Spinal muscular atrophy (SMA) is a neurodegenerative disorder primarily affecting motor neurons. This untreatable disease is caused by the absence of a functional survival of motor neuron 1 (SMN1) gene, which leads to a critical reduction in fulllength survival of motor neuron (SMN) protein. The multifunctional SMN protein is important in the biogenesis of small nuclear ribonuclear proteins, pr...

متن کامل

The MARCKS protein amount is differently regulated by calpain during toxic effects of methylmercury between SH-SY5Y and EA.hy926 cells

Methylmercury (MeHg) is an environmental pollutant that shows severe toxicity to humans and animals. However, the molecular mechanisms mediating MeHg toxicity are not completely understood. We have previously reported that the MARCKS protein is involved in the MeHg toxicity to SH-SY5Y neuroblastoma and EA.hy926 vascular endothelial cell lines. In addition, calpain, a Ca2+-dependent protease, is...

متن کامل

Functional switching of ATM: sensor of DNA damage in proliferating cells and mediator of Akt survival signal in post-mitotic human neuron-like cells

Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias. The gene mutated in this disease, ATM (A-T, mutated), encodes a 370-kDa Ser/Thr protein kinase. ATM not only mediates cellular response to DNA damage but also acts as an activator of Akt in response to insulin. However, despite intensive studies, the mechanism...

متن کامل

Calcium/calmodulin-dependent protein kinase IV is cleaved by caspase-3 and calpain in SH-SY5Y human neuroblastoma cells undergoing apoptosis.

We have previously demonstrated cleavage of alpha-spectrin by caspase-3 and calpain during apoptosis in SH-SY5Y neuroblastoma cells (Nath, R., Raser, K. J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R. V., Yuen, P., Gilbertsen, R. B., and Wang, K. K. (1996) Biochem. J. 319, 683-690). We demonstrate here that calcium/calmodulin-dependent protein kinase IV (CaMK IV) is ...

متن کامل

In Vitro Assessment of the Gene Expression of EZH-2 and P300 During Motor Neuron Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells

Introduction: Maintenance of neurogenesis depends on the function of some histone-modifying enzymes; including Enhancer of zeste homolog 2 (EZH2) and histone acetyltransferases (P300). The mechanism of epigenetic regulation and gene expression underlying the transition of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) into MNs has not been fully clarified.  Methods: Two morphoge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2011